
·~ The Problem

T here are several problems associ-
ated with implementing database

access routines using embedded SQL in
application 3GL source code:

1. Each 3GL routine performs a specific
rigid application /Unction, and rou
tines, therefore, tend to proliferate.

3GL source modules containing em
bedded SQL are usually passed through
an SQL preprocessor prior to compila
tion. Some SQL preprocessors generate
compiled SQL which is stored in the
DBMS under the name of the 3GL source
program. This defeats the modularity
of the 3GL code, making it difficult or
impossible to create shared libraries
of database access routines. (Note:
although this article disrusses the use
of embedded SQL in 3GL applications,
many of the same comments apply to
4GL applications.) Other preprocessors
create compiled SQL, but do not use the
source module name for controlling the
SQL module names. DB2, for example,
uses this approach. In DB2, a compiled
SQL module is related to the name of
the final linked application, not the
original source program name.

The inability to create shareable
database access routines affects the
structure of applications, the time and
resources required to design and de
velop them, and their uniformity and
efficiency. It promotes bottom-up re
placement of record-at-a-time file 1/0
operations with relational data access
routines, rather than top-Oown design
of relational applications.

2. The preprocessor phase is cumbersome,
adding a devewpment step which is
not always compatible with software
management tools.

Symbolic debuggers, for example,
will not show the original embedded
SQL source code, but rather its pro
cessed form, making it difficult to track
down compilation and runtime errors.

3. The embedded relational database
language is "mixed" with the third
generation language so that source
code control is difficuU - this is some
times referred to as an "impedance
mismatch. •

It is difficult to modify the 3GL source
code when the SQL is changed, and vice
versa. Even if programs are treated as
database dependent objects, this infor
mation is not available to 3GL source

Sv•••r 1989

27

code management tools. For example,
in a Unix environment, there is no rea
sonable way to manage this mixture,
short of maintaining all data definition
language (DDL) and data manipulation
language (DML) statements under RCS
or secs, and using the make compila
tion utility to keep track of dependent
database objects as well as 3GL code.

4. A programmer must know not only the
third-generation language, but also
the relational database language and
the characteristics of the preprocessor.

If the programmer does not under-
stand how to write both languages, this
will be reflected in the interaction be
tween them. This is particularly true
where the 3GL programmer must explic
itly assert transaction control. If the 3GL
programming is weak, the code be
tween SQL statements will be less than
efficient, and could allow locks to be
held during transaction processing for
unnecessary periods of time. If the SQL
programming is weak, unnecessary
calls could be made to the database, re
sulting in reduced system throughput
Furthermore, finding and retaining indi
viduals with both sets of skills can be
difficult.and costly.

5. The programmer will have to obtain
help in optimizing the SQL, and will
then have to translate the optimized
SQL into the appropriate syntaxf<>r
embedding in third-generation
language code.

This requires a unique skill, since
the SQL syntax when embedded in a
third generation language may be quite
different from the syntax when the SQL
is used interactively. With embedded
SQL, the use of CURSORS, FETCH state
ments. etc. may lead to translation prob
lems froni the interactive version. It is
not sufficient to have database per
sonnel optimize the individual SQL
statements since it is the transaction
implemented as a sequence of SQL state
ments which must be efficient

A proficient SQL coder, knowledge
able about the database schema and
the product being used, may be able to
achieve the desired function more effi.
ciently with a different sequence of SQL
statements from that which the applica
tions programmer would use. Since the
applications programmer and database
personnel are often in separate work
groups with different skill sets, the

coupling between the two ~nds of code
makes task division more difficult
when managing application develop
ment, deployment, and maintenance.

6. Source code must be recompiled and
the entire system relinked if there are
any changes to the embeddedSQL

Even with dynamic embedded SQL,
there are limitations to how much an
SQL statement can be changed before
the underlying 3GL code must be
changed.

7. Source code is costly to move from
one relational database management
system product to another.

While the ANSI/ISO SQL standardiza
tion efforts certainly help with portabil
ity efficient code is always developed
at the expense of portability. Those fea
tures which differentiate products also
make applications non-portable. Devel
oping an application around the least
common denominator - the common
subset - severely restricts the creativ
ity of the applications designer, and
often removes the benefits identified
during DBMS product evaluation and
selection. The product will not, there
fore, perform to its full potential.

8. The source code is dependent on the
database schema.

This last item is by far the most
costly. Large applications will consist of
many database access routines: When
the database administrator decides to
modify the relational database schema,
each of these routines will have to be
examined to see if they now access
some modified data element in an inap
propriate manner. Short of .a ~ll da13:
dictionary such as that envts1oned with
IRDS, this is an impossibly complex job,
and leads to redundancy between the
development and database ~anage
ment environments. Even with such
a repository, making the necessary
changes to the source code can be
very time consuming. .

If the cost of this maintenance 1s
high, changes to the sch~ma will be
forbidden in order to avo1q that cost,
whether it be time, expertise, or poten
tial disruption of the business. This
coupling between application code and
database schema effectively removes
one of the primary benefits of a rela
tional database - flexibility. ·

Generalizing Database Access

Data including SQL statements,
sh~uld never be hardcoded in an

application program. The application
should have responsibility for

• determining what data is sent to the
database,

• deciding what to do with data re
turned from the database,

• specifying in a functional sense only
what is to be done by the database,
and

• nothing else to do with the database.

The application code should not be
coupled to SQL specifi_cs or to t~e data
base design. The codmg of umque rou
tines for each application SQL command
is superfluous. Indeed, failing to isolate
code from data leads to maintenance
inefficiencies.

DBMS products conforming to the
SQL ANSI/ISO standard support the use
of embedded SQL Here, SQL is embed
ded explicitly in the code, and a pre
processor (sometimes called a
precompiler) is used to convert _the SQL
(sometimes preceded by a special sym
bol) into function calls to the datab~se.
Several vendors allow the embeddmg
of certain statements by reference, so
that they can be altered during the
run of the application - this is called
dynamicSQL

Some vendors allow the programmer
to code the function calls to the da~
base directly - this is called a runtime
function call interface. It is a common
error for the programmer to hardcode
the SQL statement as an argument to
the database vendor supplied function
call. These errors can be eliminated by
the creation of a flexible development
library - there is no need to re-code
the vendor supplied function calls for
each application. .

Strong data coupling of the applica
tion code to the relational DBMS is a~
error that can occur whether a function
call interface or embedded SQL is used,
but is hard to avoid with embedded
SQL. The process by which data cou
pling (or binding) is ac~omplishe<:f can
occur at preprocessor ti~e, c?mp1le
time, link time, or execution time:-
the latter being the only truly flexible
method. Even if the data is relatively
isolated by creating a macro-defined . .
symbol which the 3GL preprocessor will
expand at compile time, the code be
comes strongly coupled to both the

Info DB

28

eccentricities of the DML (including
bugs) and the database design.

If the DBMS vendor supports SQL

stored procedures (or commands or
scripts) that can be stored in the data
base and invoked by name (cal/-by
name syntax), the SQL might be
removed from the code altogether.
Two problems remain to be reso~ved,
however. First, the code supportmg the
execution of the SQL stored procedure
is sensitive to the particular SQL state
ments within the procedure. Second,
the linkage between the application
code data structures and the data struc
tures used by the stored procedure SQL

to interface to the vendor DBMS, is de
fined within the application code itself,
i.e., these structures couple the data-.
base schema to the application and vtce
versa. Nonetheless, the use of SQL
stored procedures can be justified from
the standpoint of efficiency and im
proved database schema indepen
dence. They also provide a measu!e of
relational database support for object
oriented programming techniques.

The most important tool that can be
developed for a relational application is
a shareable library (or server) of gen
eral purpose database access routi_nes
which eliminate the problems outlined
above, including the two that remain
when using stored procedures. The
tool should be accessible from a num
ber of 3GL languages. Such a tool is
referred to as a database access
manager.

Database Access Manager
Characteristics

To those unfamiliar with the benefits
of relational databases (and non

procedural programming languages in
general), it might appear that a set of
callable general purpose database ac
cess routines would be too low-level for
direct use by applications. However,
the fact is that the specific DML com
mands issued (or requested) by the ap
plication can serve to differ~ntia!e one
function from another. The idea ts to
treat a group of SQL statements (Le.: an,,
SQL command) as a "database function.

A database access manager enables
applications to be written which are as
independent of the database schem_a as
possible. Applications developed this
way retain the flexibility of the rela
tional DBMS.

The database access manager should
provide a small number of function, sub
routine, or procedure calls that an appli
cations programmer needs to learn.
These functions should isolate the third
generation language code from the rela
tional database language code. They
should provide a high-level standard
interface for the programmer to use in
accessing the relational database. They
should also isolate vendor specific rela
tional features from the application so
that a relational database management
system vendor can be changed without
modifying third-generation language
code.

The major emphasis of the design of
a database access manager is to satisfy
the requirement that application pro
grams be able to handle many different
types of data structures and multiple
SQL statements as a unit. In order to
achieve this aim, the concepts of object
oriented programming, in particular
"data abstraction," are used extensively.

A database access manager should
be written so as to maximize the effi
ciency and simplicity of relational data
base access and modification (set-at-a
time and non-procedural) as requested
by applications (single record-at-a-time
and procedural). It should make exten
sive use of the data dictionary, so that
changes to the database do not affect
its functional integrity.

The use of SQL commands, stored
commands, stored programs, and
stored procedures supported by a spe
cific DBMS vendor, can all provide the
call-by-name syntax required by the
database access manager concept.
see Figure 1. These features isolate the
implementation details of the SQL}Unc
tion to be executed from that of the 3GL
calling function which manages the exe
cution of the SQL. The required SQL is
defined and possibly compiled indepen
dently of the application, so that it can
be changed without altering the pro
gram. Data structures which hold ei
ther input or output data are defined
externally to the program in a loadable
format and given a name. The name of
the module of SQL statements, the
name of the block of parameters that
must be passed to it, and the name of
input and output data structures be
come the arguments of a database ac
cess routine. As a result, the application

data
dictionary

Application

Database
Access

Manager

DBMS

data
structures

stored
procedures
& programs

Figure 1. Database access manager
architecture

becomes relatively database schema in
dependent. Independent optimization
of SQL statements and commands, and
the promotion of robust database ac
cess (standard error and recovery han
dling, transaction management, for
example) becomes possible.

A database access manager should
improve the ability to meet the rules for
flexible applications listed in Figure 2.
These rules describe the nature of pro
cedures which can be invoked from a
3GL or 4GL relational DBMS application,
and which execute a group of DDL or
DML statements. A collection of such
procedures constitutes a proposed
database access manager.

All of this can be done without
sacrificing performance. The size of
applications is minimized by reducing
redundant database access code. The
code can be written so that it is porta
ble across environments. In effect, the
intended flexibility of relational data
bases can be not only preserved, but
extended to the application code. The
cost of maintenance is decreased, de
bugging time is reduced, and neither

c .. ---· •o•o

29

the application programmer nor the
database administrator need be con
cerned about unnecessary coupling be
tween the application and the relational
database. They can each do that por
tion of the work which they know best

In a development environment which
uses a database access manager,
clearly defined roles for information
systems personnel are created. These
roles are separated by function. Manag
ers can employ and train individuals to
meet the specific needs of these roles.
As a result, resource and budget man
agement becomes easier than when in
dividuals must acquire multiple skills.
Highly trained relational database pro
fessionals are hard to find and demand
higher than average salaries. The skills
they possess should not be used for
tasks which a proficient programmer
can accomplish. Indeed, it is extremely
difficult to train an individual in the in
tricacies of database design, SQL cod
ing, SQL optimization, 3GL coding, and
the application-specific functionality, let
alone recruit the larger numbers of
such personnel that are needed on me
dium- to large-scale relational DBMS pro
jects. In particular, three significantly
different roles for programming profes
sionals are created: the applications
programmer, the SQL programmer, and
the database administrator.

The applications programmer writes
code only in a non-database language,
such as COBOL When database access
is required by the design, the applica
tions programmer

• specifies the functional SQL require
m_ents (though not the SQL) for the
SQL programmer,

• defines the input and output data
structures,

• writes the database access manager
function calls and code skeleton, and

• specifies and codes data structure
allocation or processing functions.

The SQL programmer takes over
where the applications programmer
leaves off. This individual is the inter
face between the applications program
mer and the database administrator,
and must be familiar with the current
database schema as defined by the

database administrator. The SQL
programmer

• converts the functional SQL require
ments into schema-specific, opti
mized SQL commands,

• ensures that the applications
programmer's input and output data
structures are properly interpreted
by the SQL function ,

• maintains the SQL commands as the
database schema is altered,

• determines the performance load
on the database with the database
administrator, and

• implements the appropriate trans
action management

The database administrator (DBA)
has a much more traditional role.
The DBA

• designs and modifies the database
schema to meet the needs of all
applications,

• monitors and optimizes the load on
database resources,

• manages database security, and

• manages database recovery and
availability.

Database Access Manager
Functions

A database access manager should
provide an interface between the

application program and the database.
The purpose is to increase coding pro
ductivity by minimizing the need to
know details of the access methods or
of the schema of the database being
accessed. The major functions of the
tool should include opening and clos
ing the database, binding of variables
and data structures, the execution of
data manipulation language statements,
and the retrieval of pending data. The
tool should not consume unnecessary
memory or storage space, and be imple
mented either as a shared library or as
a re-entrant server.

The detailed elements of database
access manager functionality are deter
mined in part by the method of imple
mentation. If it is implemented via a ·
shared library the database access man
ager should include

• multi-tasking initialization and
termination,

30

l . Schema Transparency: Changes to the DBMS schema have no effect on procedure
invocation and execution when such changes preserve information and theoretically
permit unimpairment.

2 . DML and DDL Transparency: The DML and DDL used to define the procedure have no
effect on the invocation or execution of the procedure, even if the language syntax is
changed, for example, if SQL is used in place of QUEL.

3 . DBMS Location Transparency: The location of tables referenced by a procedure does
not affect the invocation or execution of the procedure.

4 . Procedure Transparency: The procedure is maintained in the database system catalog
like any other database object, con be shored by all users, and can be executed in a
manner consistent with the syntax of the DML.

5 . Domain Transparency: Column domain changes do not affect the invocation or
execution of a procedure, or the parameter definitions of a procedure.

6 . Syntax Transparency: Procedure definition syntax changes do not affect the method of
invoking or executing a procedure where changes theoretically permit unimpoirment.

7. Complexity Independence: Procedure invocation and execution is independent of the
complexity of the procedure definition.

8. Detailed Diagnostics: Detailed error information about procedure invocation and
execution is provided.

9 . Full DDL and DML Support: All DML and DDL statements con be executed via a
procedure.

l 0 . No DBMS Imposed Re.stridions: There are no practical limits on the size of a
procedure, or on the number of parameters or statements it can contain .

l l . Complete Security Support: A means of controlling the permission to execute a
procedure is provided that is consistent with the syntax of the DML and DDL.

12. Transaction Scope Independence: Transactions can span and be embedded in
procedures.

13 . Database Code Isolation: Database code is isolated from non-database code.

14. Error Processing Transparency: The error processing required when accessing the
relational DBMS does not effect the invocation or execution of a procedure.

15. Application Doto Structure Transparency: Changes to the application data structures
that ore used to access or modify the database have no effect on the invocation or
execution of the procedure when such changes preserve information and theoretically
permit un impairment, nor do they require recompilation or relinking of the application.

16. Performance Transparency: Procedure optimization hos no effect on the invocation or
execution of the procedure.

17. Application Transaction Management Support: A facility to manage the priority,
recovery, and relative scheduling of applications is provided that does not have to be
hardcoded.

(Note: A procedure is a facility for executing a group of DDL and DML statements from a
3GL or 4GL relational DBMS application .)

Flgu- 2. Rules •- -pportlng Rexlble relatf-al DBMS appllcaffons

• input and output program variable
binding external to the application
program,

• support for arrays of records and
records of arrays,

• support for any "flat" data structure
including linked lists, tree struc
tures, and so forth,

• multi-record reads and writes,

• standard error processing and user
defined exception processing,

• 3GL procedural call interface.

A server-based tool can also enhance
fault tolerance, availability, recoverabil
ity, and system administration through

• automatic deadlock recovery,

• asynchronous time-out and recovery,

• automatic retry after errors,

• forced table and database locking,
and virtual record "locking,"

• virtual stored commands (preparsed
queries not stored in the database) ,

• soft failover to a hot standby database
instance,

• an application level transaction defini
tion language,

• general application transaction
management.

What a Database Access
Manager Should Not Do
1 X Thile a database access manager
V V will free the user from excessive

concern with the intricacies of database
software, it can only encourage good
program structure and use of the rela
tional database. It cannot force the user
to write optimal code; it does not gener
ate code, nor can it ensure that the
database schema is properly designed.
Security issues are considered to be in
the domain of the database manage
ment system and the operating system.
However, properly used, the tool will
provide many benefits.

While the principal focus is, in fact,
the execution of SQL (or other DMLs
and DDLs), these routines should con
tain no intelligence whatsoever regard
ing the proper design and use of SQL

commands. A production runtime envi
ronment is not the place for design and
debugging. However, external utilities
can be provided for interactive develop
ment of the SQL Since most relational
DBMSS provide such utilities, interactive
design, development and testing of SQL
should be encouraged. It is even possi
ble to provide outboard translation of
the SQL from one vendor dialect to an
other, but the overhead cost of doing
this at runtime is undesirable.

It should not be the purpose of the
database access manager to provide
error checking which is application
specific. For example, the following
should not be internal functions:

• defining procedural qualifications of
data prior to writing to the database,
e.g., edit checks

• defining procedural qualifications
of data prior to acceptance of data
retrieved from the database

• executing non-server related process
ing such as application specific excep
tion processing or mirroring to host
application files

A database access manager accepts
SQL commands which are made

31

3GL APPLICATION CODE
I -initiates/terminates RAM

- requests usage of externally defined data structures
- makes named database requests

RAM SHARED CODE OR SERVER
- initializes/terminates database communications
- loads/manages named SQL procedures
- loads/manages named data structure definitions
- manages/optimizes database requests

VENDOR SUPPLIED FUNCTION CALL INTERFACE

~~~~~-D-A-TA_B_A_s_E_E_N_G_1N_E~~~~~1~ data and 
metadata 

RAM DEFINITION UTILITY 
- creates/ edits named SOL procedures 
- creates/edits named data structure definitions 

Figure 3. RAM architecture 

specific by a named access routine ar
gument list (the message) and not by 
the name of the function call. If access 
for a specific application purpose to 
the vendor database is accomplished 
through named function calls, co-min
gling of data structures and control 
structures occurs, with the degradation 
of the software architecture being the 
final result. 

An Existing Solutlon 

0 ne implementation of a database 
access manager is known as the 

Relational Access Manager (RAM) -
see Figures 3 and 4. The RAM was de
signed and developed by Alternative 
Technologies over a period of eight 
years. It not only meets all the guide
lines for a database access manager dis
cussed above, but also has served as a 
repository for much of the expertise we 
have acquired in developing mission 
critical and complex relational database 
applications. 

Cu ..... -.. IOAO 

At the present time RAM libraries are 
available for ORACLE, ShareBase (for
merly Britton Lee) and the Sybase SQL 
Server, each of which supports the cur
rently necessary function call interface 
to the database. Forthcoming improve
ments to the embedded capabilities of 
RTI's INGRES DBMS may allow support 
for this product. By removing the need 
for a function call interface, products 
like DB2 could also be supported. 
Under VAX/VMS, the RAM supports all 
languages which meet the VPJ.. calling 
standards - a uniform means of invok
ing subroutines and passing argu
ments. The c language is supported 
in Unix environments, with other 
languages such as FORTRAN, COBOL, 
Pascal, and Ada where possible. 

There are two versions of the RAM: 

• the standard product which consists 
of a library of (in most environ
ments) shareable functions, and 



* RAM-INIT needs be executed only once and initializes the interfaces. 
* Each set of input and output data structures used by a RAM application may 
* be defined either at runtime using calls to RAM-BIND or externally using 
* a utility designed for the purpose. 
* RAM-LOADDEFS is used to load and identify all named data structures and 
* SOL procedures from the database. 
* A particular data structure is made active with a call to RAM-SETDEF. 
* RAM-QUERY and the "PERFORM ... UNTIL" loop execute the required SOL queries. 
* RAM-NEXTBUF handles the return of multiple rows of data from the database, 
* converting the data into the proper output data structure automatically . 
* 
IDENTIFICATION DIVISION. 
PROGRAM-ID. CALLING-PROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
* ram-tokens.h contains WORKING-STORAGE SECTION declarations and values 
INCLUDE ram-tokens.h 
PROCEDURE DIVISION. 
IN IT I ALIZA TI ON. 

CALL "RAM-INIT" USING ... GIVING RETURN-CODE 
IF LOAD-FROM-DATABASE - TRUE 

* load buffer definitions 
CALL "RAM-LOADDEFS" USING ... GIVING RETURN-CODE 

* load command definitions 
CALL "RAM-LOADDEFS" USING ... GIVING RETURN-CODE 

* set input buffer definition 
CALL "RAM-SETDEF" USING ... GIVING RETURN-CODE 

* set output buffer definition */ 
CALL "RAM-SETDEF" USING ... GIVING RETURN-CODE . 

* alternatively, create them in-line at run-time. 
ELSE 

* bind input variables 
CALL "RAM-BIND" USING ... GIVING RETURN-CODE 

* bind output variables 
CALL "RAM-BIND" USING ... GIVING RETURN-CODE. 

* 
BEGIN-MAIN. 
* perform query processing while RAM-MORESTMTS 

PERFORM DATABASE-PROCEDURES 
UNTIL RETURN-CODE NOT - RAM-MORESTMTS. 

END-MAIN. 
* 
TERMINATION. 
* terminate the connection to RAM, close files, etc. 

CALL "RAM-CLOSE" USING ... GIVING RETURN-CODE. 
EXIT PROGRAM. 
* 
DATABASE-PROCEDURES. 
* execute SOL queries regardless of kind 

CALL "RAM-QUERY" USING ... GIVING RETURN-CODE 
* if data is pending on return from RAM-QUERY get data 
* using RAM-NEXTBUF while RAM-MOREDATA is returned 

IF RETURN-CODE - RAM-MOREDATA 
PERFORM DB-NEXTBUF USING ... 

UNTIL RETURN-CODE NOT - RAM-MOREDATA. 
* set up the call to RAM-NEXTBUF as a procedure. 
DB-NEXTBUF. 

CALL "RAM-NEXTBUF" USING ... GIVING RETURN-CODE. 

Figure 4. RAM COBOL code skeleton 

lnfoDB 

32 

• the extended product which provides 
access to the library via a server 
process with various extensions such 
as global transaction management, 
and significantly more robust error 
recovery. 

For some database products, the tool 
can eliminate constraints on what kind 
of database language statement can 
be processed from within a so-called 
stored command or procedure. For 
example, while Sharebase does not sup
port the creation of tables within stored 
commands, RAM provides a means by 
which this may be accomplished. For 
products which do not support stored 
procedures, scripts become virtual 
stored procedures which can be cre
ated and maintained independently of 
either the application or the database 
code, and reside either on the host file 
system or in the database. 

RAM also provides a scheme for im
plementing object-oriented interfaces 
in various relational database environ
ments. While this scheme only works 
given adequate database design, con
trol over data access, control over DML 
command creation and maintenance, 
and relational access manager routines 
that are not particularly sensitive to the 
number of parameters in the message, 
it is extremely powerful. 

We have found that RAM leads to 
rapid prototyping and development as 
well as lowering the costs of mainte
nance. Very often, a simple and fairly 
standard 3GL code skeleton suffices to 
implement the relational application 
prototype. The details are then com
pleted with extensive SQL, as the data
base schema is further defined and 
modified. Application functional pro
totyping and database design become 
parallel tasks. Since RAM provides a 
means for defining the data structures 
externally to the application code, re
compilation and relinking are rarely 
needed. 

Features such as automatic trans
lation of SQL dialects, distributed appli
cation transaction management, and 
CL/l support are planned. 

David McGoveran is President of 
Alternative Technologies, a company 
that provides consulting services to 
users and vendors of relational DBMS 
software. Relational Access Manager 
and RAM are trademarks of Alternative 
Technologies. 


